본문 바로가기
AI/참고자료

[AI] 인공지능의 원리 y = Wx + b

by SeungyubLee 2025. 11. 7.


※ AI 모델의 시작은 단 한 줄의 수식으로부터

AI, 머신러닝, 딥러닝 등 복잡해 보이는 용어들도 사실은 하나의 단순한 수식에서 출발한다.

 

y = Wx + b

 

이 짧은 식이 모든 인공지능 모델의 공통 뿌리이다.

기호 의미 설명
x 입력 데이터 모델이 받는 데이터 (예 : [나이, 키, 몸무게])
W 가중치(Weight) 모델이 학습하며 조정하는 값 (데이터의 중요도)
b 편향(Bias) 결과를 미세 조정하는 상수항
y 출력(결과) 모델이 예측하거나 분류한 결과값

 

즉, 입력 데이터 x에 가중치 W를 곱하고, 편향 b를 더해 결과 y를 내보내는 것
이 단순한 연산이 바로 모든 AI 모델의 기본 구조이다.


하지만 현실의 데이터는 단순하지 않음

단순한 y = Wx + b 만으로는
복잡한 이미지, 음성, 문장 같은 비정형 데이터를 설명하기 어렵다.
그래서 딥러닝은 이 구조를 점점 확장한다.


딥러닝의 발전 과정 - 단순식에서 복잡한 모델로


모든 인공지능 모델은 결국
y = Wx + b 라는 단순한 수식에서 출발한다.
단순한 선형 계산이 여러 층으로 쌓이고, 비선형 함수로 확장되면서
오늘날 우리가 알고 있는 딥러닝과 생성형 AI가 탄생한 것이다.